Vigolo D.*, Ramakrishna S. N., deMello A. J. Facile Tuning of the Mechanical Properties of a Biocompatible Soft Material. Sci. Rep. 2019, 9 (1), 7125.
Abstract:
Herein, we introduce a method to locally modify the mechanical properties of a soft, biocompatible material through the exploitation of the effects induced by the presence of a local temperature gradient. In our hypotheses, this induces a concentration gradient in an aqueous sodium alginate solution containing calcium carbonate particles confined within a microfluidic channel. The concentration gradient is then fixed by forming a stable calcium alginate hydrogel. The process responsible for the hydrogel formation is initiated by diffusing an acidic oil solution through a permeable membrane in a 2-layer microfluidic device, thus reducing the pH and freeing calcium ions. We characterize the gradient of mechanical properties using atomic force microscopy nanoindentation measurements for a variety of material compositions and thermal conditions. Significantly, our novel approach enables the creation of steep gradients in mechanical properties (typically between 10–100 kPa/mm) on small scales, which will be of significant use in a range of tissue engineering and cell mechanosensing studies.